High Capacity Cryocooler (2020 Cooler) Project

Game Changing Development Program | Space Technology Mission Directorate (STMD)

ANTICIPATED BENEFITS

To NASA funded missions:

Future exploration missions beyond Low Earth Orbit will require long-term (>2 weeks) in-space storage of large quantities (>4 metric tons) of Liquid Hydrogen without a significant loss of propellant due to boil off from radiation heat sources.

DETAILED DESCRIPTION

Advance the TRL of a 20W 20K cryocooler for use within a NASA future-defined Liquid Hydrogen Zero Boil Off test

U.S. WORK LOCATIONS AND KEY PARTNERS

Glenn Research Center

🍁 Lead Center:

Other Organizations Performing Work:

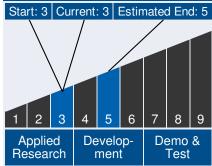

• Creare, LLC (Hanover, NH)

Table of Contents

Anticipated Benefits1
Detailed Description 1
U.S. Work Locations and Key
Partners 1
Technology Maturity 1
Management Team 1
Technology Areas 2
Details for Technology 1 3

Technology Maturity

Management Team

Program Executive:

• Lanetra Tate

Program Manager:

Mary Wusk

Continued on following page.

U.S. States

With Work

High Capacity Cryocooler (2020 Cooler) Project

Game Changing Development Program | Space Technology Mission Directorate (STMD)

Management Team (cont.)

Project Manager:

Michael Doherty

Principal Investigator:

Molly Anderson

Technology Areas

Primary Technology Area:

In-Space Propulsion Technologies (TA 2)

☐ Supporting Technologies (TA

Propellant Storage and Transfer (TA 2.4.2)

☐ Active Thermal
Control (TA 2.4.2.2)

- Human Exploration Destination Systems (TA 7)

Human Mobility Systems (TA 7.3)

└─ EVA Mobility (TA 7.3.1)

Advanced
Airlock/Suitlock (TA
7.3.1.6)

Secondary Technology Area:

Launch Propulsion Systems (TA 1)

 Materials, Structures, Mechanical Systems and Manufacturing (TA 12)

In-Space Propulsion Technologies (TA 2)

Supporting Technologies (TA 2.4)

Continued on following page.

High Capacity Cryocooler (2020 Cooler) Project

Game Changing Development Program | Space Technology Mission Directorate (STMD)

Technology Areas (cont.)

Materials, Structures, Mechanical Systems and Manufacturing (TA 12)

- ─ Materials (TA 12.1)
 - □ Flexible Material
 Systems (TA 12.1.3)
- ☐ Structures (TA 12.2)
 - Lightweight Concepts (TA 12.2.1)
- Mechanical Systems (TA 12.3)
 - ─ Deployables, Docking, and Interfaces (TA 12.3.1)

Thermal Management Systems (TA 14)

- └─ Cryogenic Systems (TA 14.1)
 - □ Active Thermal Control (TA 14.1.2)
 - ─ High Capacity 20Kelvin Cryocoolers (TA 14.1.2.1)

 - Integrated
 Radiator/Cryocooler for
 Liquefaction (TA
 14.1.2.7)

DETAILS FOR TECHNOLOGY 1

Technology Title

High Capacity Cryocooler

Technology Description

This technology is categorized as a hardware subsystem for ground scientific research or analysis

Active Project (2014 - 2017)

High Capacity Cryocooler (2020 Cooler) Project

Game Changing Development Program | Space Technology Mission Directorate (STMD)

The 20 Watt, 20 Kelvin cryocooler utilizes the reverse turbo-Brayton thermodynamic cycle to cool helium working gas at cryogenic temperatures, circulated through a distributed network for discrete or broad area cooling, having the potential to achieve zero (or near zero) boil-off storage of space-based of liquid hydrogen.

Capabilities Provided

On-orbit, long duration storage of liquid hydrogen

Potential Applications

Space Launch System (SLS) Exploration Upper Stage (EUS)